Index-Number Tests and the Common-Scaling Social Cost-of-Living Index ${ }^{1}$

David Donaldson and Krishna Pendakur
Manuscript number SCWE-D-10-00032

February 2010; revised November 6, 2010

Abstract

For a change in prices, the common-scaling social cost-of-living index is the equal scaling of each individual's expenditure level needed to restore the level of social welfare to its prechange value. This index does not, in general, satisfy two standard index-number tests. The reversal test requires the index value for the reverse change to be the reciprocal of the original index. And the circular test requires the product of index values for successive price changes to be equal to the index value for the whole change. We show that both tests are satisfied if and only if the Bergson-Samuelson indirect social-welfare function is homothetic in prices, a condition which does not require individual preferences to be homothetic. If individual preferences are homothetic, however, stronger conditions on the Bergson-Samuelson indirect must be satisfied. Given these results, we ask whether the restrictions are empirically reasonable and find, in the case that individual preferences are not homothetic, that they make little difference to estimates of the index.

Journal of Economic Literature Classification Numbers: C43, D63
Keywords: Social Cost of Living, Aggregation, Welfare Economics

David Donaldson: Department of Economics, University of British Columbia, 4408 W. 15th Avenue, Vancouver BC V6R 3B2, Canada (dvdd@telus.net)
Krishna Pendakur: Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada (pendakur@sfu.ca)

[^0]Statistical agencies worldwide produce price inflation statistics to guide monetary policy, provide indicators of consumer well-being, and help with the measurement of real output, inequality and poverty. To be useful over long periods of time, such inflation statistics must satisfy the circularity test: that is, the product of a chain of inflation rates across successive periods should equal the total price inflation between the beginning and end periods. If, for example, a price index indicates that prices have risen by 10% (index value 1.10) in each of 2010 and 2011, it is reasonable to expect the same index to indicate an increase of 21% (index value $(1.10)^{2}=1.21$) over the two years.

Inflation statistics that do not satisfy the circularity test are not unique in the following sense: different overall inflation rates may be obtained by chaining the index over different subperiods. The circularity test implies a weaker test, the reversal test, which requires the index value for any price change to be the reciprocal of the value for the reverse change.

Although the inflation statistics computed by statistical agencies are intended for use as social index numbers, they are based on the idea of the cost-of-living index (COLI) for an individual. One of the proposals for such an index is due to Bowley [1928]. It measures inflation or deflation as the post-change scaling of expenditure needed to bring individual utility to the pre-change level. Bowley's index is equal to the one proposed by Konüs, which is the ratio of expenditure functions at post-change and pre-change prices and the pre-change utility level. It is well known that these individual indexes satisfy the circularity test if and only if individual preferences are homothetic. ${ }^{2}$

Of course, the inflation rate suitable for society at large may not be equal to that suitable for any one individual. A social cost of living index (SCOLI) provides a single inflation rate that is appropriate for society, and several have been proposed. The earliest (and most widely used) SCOLI is the so-called 'plutocratic' index, which is equal to the expenditure-weighted average of the individual cost-of-living indexes. The consumer price index (CPI), computed by the Bureau of Labor Statistics of the United States, is a first-order approximation of the plutocratic index.

Pollak [1980] proposed a SCOLI that can be thought of as a generalization of Konüs's index. His index is equal to the ratio of minimum total expenditures (across all people) at post-change and pre-change prices required to keep social welfare at the pre-change level. This scale allows for the possibility that the optimal expenditure (income) distribution may differ across different price vectors, and accounts for the possible 'savings' in total expenditure resulting from that change. Pollak's SCOLI depends on the level of social welfare in general and satisfies circularity if and only if it is independent of that level. Blackorby and Donaldson [1983] investigates conditions under which Pollak's SCOLI is independent of the level of social welfare (and therefore satisfies the circularity test) given that the social-welfare function is additively separable.

More recently, Crossley and Pendakur [2010] proposed the common-scaling social cost-of-living index (CS-SCOLI). This SCOLI is equal to the common scaling of each individual's expenditure that makes social welfare at post-change prices equal to social welfare at prechange prices. It is, therefore, a generalization of the single-person index proposed by Bowley.
${ }^{2}$ Circularity requires the Konüs index to be independent of the individual's utility level.

In this paper, we show that the CS-SCOLI satisfies the circularity and reversal tests under much more general conditions than individual homotheticity. In particular, we show that the CS-SCOLI satisfies these tests if and only if the indirect Bergson-Samuelson social welfare function is homothetic in prices, a condition which may hold even if individual utilities are non-homothetic. In particular, if social welfare is the sum of utilities (utilitarian) and utilities are price-independent generalized logarithmic (PIGL), a class which is more general than homothetic or quasihomothetic preferences, then the CS-SCOLI satisfies the reversal and circularity tests. This means that the CS-SCOLI may serve as the theoretical basis for policy-relevant (that is, consistently chainable) inflation statistics without having to lean on the undesirable and false assumption of homothetic individual preferences.

In addition to the general case, we also consider the case of homothetic individual preferences. In that case, satisfaction of the tests together with a preference-diversity condition requires the Bergson-Samuelson indirect to be homothetic in prices and homothetic in expenditures.

Given these results, we ask whether the restrictions are empirically reasonable. In the case that individual preferences are not homothetic, we find that the restrictions make little difference to estimates of the index.

1. The Common-Scaling Social Cost-of-Living Index

The common-scaling social cost-of-living index (CS-SCOLI) is a departure from the standard ones. For a price change, it is the equal scaling of every individual's expenditure level needed to restore the pre-change level of social welfare. Because it is based on a social-welfare function, the index takes account of the social attitude towards inequality of well-being when assessing the social cost of price changes.

Suppose that an economy consists of n single adults, where n is a positive integer, with m goods, $m \geq 2$. Individual i has a continuous indirect utility function $V^{i}: \mathcal{R}_{++}^{m+1} \rightarrow \mathcal{R}$ which is increasing in expenditure, weakly decreasing in prices, and homogeneous of degree zero.

The social-welfare function $W: V^{1}\left(\mathcal{R}_{++}^{m+1}\right) \times \ldots \times V^{n}\left(\mathcal{R}_{++}^{m+1}\right) \rightarrow \mathcal{R}$ is assumed to be continuous, increasing (Pareto-inclusive), and symmetric (anonymous). The Bergson-Samuelson indirect social-welfare function $B: \mathcal{R}_{++}^{m+n} \rightarrow \mathcal{R}$ is given by

$$
\begin{equation*}
B(p, x)=W\left(V^{1}\left(p, x_{1}\right), \ldots, V^{n}\left(p, x_{n}\right)\right), \tag{1}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{m}\right)$ is the (common) price vector and $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of individual expenditures. B is homogeneous of degree zero. Because W is increasing in individual utilities which are, in turn, increasing in individual expenditures, B is increasing in x. Social-welfare functions W and B may be ordinally measurable (unique up to increasing transformations) but require some interpersonal comparisons of individual utilities. For a discussion, see Blackorby, Bossert and Donaldson [2005, Chapters 3, 4].

Suppose prices change from p^{b} to p^{a} (b for 'before', a for 'after'), and x is the vector of individual expenditures corresponding to p^{b} : the 'before' expenditure vector. The commonscaling social cost-of-living index $I: \mathcal{R}_{++}^{2 m+n} \rightarrow \mathcal{R}$ is written $I\left(p^{a}, p^{b}, x\right)$ and defined by

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\mu \Leftrightarrow W\left(V^{1}\left(p^{b}, x_{1}\right), \ldots, V^{n}\left(p^{b}, x_{n}\right)\right)=W\left(V^{1}\left(p^{a}, \mu x_{1}\right), \ldots, V^{n}\left(p^{a}, \mu x_{n}\right)\right) \tag{2}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\mu \Leftrightarrow B\left(p^{b}, x\right)=B\left(p^{a}, \mu x\right) . \tag{3}
\end{equation*}
$$

From the definition of I and the fact that B is increasing in $x, I\left(p^{a}, p^{b}, x\right) \geq 1$ if and only if $B\left(p^{b}, x\right) \leq B\left(p^{a}, x\right)$ for all $\left(p^{a}, p^{b}, x\right) \in \mathcal{R}_{++}^{2 m+n}$. Consequently, the index reflects changes in the level of social welfare.

Because B is homogeneous of degree zero, the common-scaling index always satisfies several homogeneity properties.

Theorem 1: The common-scaling social cost-of-living index I is homogeneous of degree zero, homogeneous of degree one in its first argument, and jointly homogeneous of degree minus one in its second and third arguments.

Proof: For all $\left(p^{a}, p^{b}, x\right) \in \mathcal{R}_{++}^{2 m+n}$, the definition of I implies

$$
\begin{equation*}
B\left(\lambda p^{b}, \lambda x\right)=B\left(\lambda p^{a}, I\left(\lambda p^{a}, \lambda p^{b}, \lambda x\right) \lambda x\right) \tag{4}
\end{equation*}
$$

and, because B is homogeneous of degree zero,

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(p^{a}, I\left(\lambda p^{a}, \lambda p^{b}, \lambda x\right) x\right) . \tag{5}
\end{equation*}
$$

From the definition of I,

$$
\begin{equation*}
I\left(\lambda p^{a}, \lambda p^{b}, \lambda x\right)=I\left(p^{a}, p^{b}, x\right), \tag{6}
\end{equation*}
$$

and I is homogenous of degree zero.
Because B is homogeneous of degree zero,

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(\lambda p^{a}, I\left(\lambda p^{a}, p^{b}, x\right) x\right)=B\left(p^{a},\left[I\left(\lambda p^{a}, p^{b}, x\right) / \lambda\right] x\right) \tag{7}
\end{equation*}
$$

By the definition of I,

$$
\begin{equation*}
I\left(\lambda p^{a}, p^{b}, x\right) / \lambda=I\left(p^{a}, p^{b}, x\right), \tag{8}
\end{equation*}
$$

so

$$
\begin{equation*}
I\left(\lambda p^{a}, p^{b}, x\right)=\lambda I\left(p^{a}, p^{b}, x\right) \tag{9}
\end{equation*}
$$

and the index is homogeneous of degree one in p^{a}.
Because I is homogenous of degree one in p^{a} and homogeneous of degree zero, (4) and (5) imply

$$
\begin{equation*}
I\left(p^{a}, \lambda p^{b}, \lambda x\right)=\frac{1}{\lambda} I\left(\lambda p^{a}, \lambda p^{b}, \lambda x\right)=\frac{1}{\lambda} I\left(p^{a}, p^{b}, x\right), \tag{10}
\end{equation*}
$$

and I is homogeneous of degree minus one in $\left(p^{b}, x\right)$.

As might be expected, the common-scaling index is not, in general, homogeneous of degree minus one in p^{b}. The following section discusses the relationship between that property and satisfaction of the index-number tests.

2. The Reversal and Circular Tests

It is reasonable to require the value of the index for the change from p^{b} to p^{a} to be the reciprocal of the value for the reverse change. This condition is called the reversal test.

Reversal Test: A common-scaling index I satisfies the reversal test if and only if $I\left(p^{a}, p^{b}, x\right)=$ $1 / I\left(p^{b}, p^{a}, x\right)$ for all $\left(p^{a}, p^{b}, x\right) \in \mathcal{R}_{++}^{2 m+n}$.

Theorem 2 presents three conditions, each of which characterizes a common-scaling index that satisfies the reversal test. Two are conditions on the index, namely that it is homogeneous of degree minus one in its second argument or, equivalently, homogeneous of degree zero in its third argument. The third condition requires the Bergson-Samuelson indirect to be (conditionally) homothetic in prices.

Theorem 2: A common-scaling index I satisfies the reversal test if and only if:
(a) I is homogeneous of degree minus one in its second argument;
(b) I is homogeneous of degree zero in its third argument;
(c) the associated Bergson-Samuelson indirect B is homothetic in prices.

Proof: (1) First, we use Theorem 1 to show that I is homogeneous of degree minus one in its second argument if and only if it is homogeneous of degree zero in its third argument. If I is homogeneous of degree minus one in p^{b} then, using Theorem 1,

$$
\begin{equation*}
I\left(p^{a}, p^{b}, \lambda x\right)=I\left(p^{a} / \lambda, p^{b} / \lambda, x\right)=\lambda I\left(p^{a} / \lambda, p^{b}, x\right)=I\left(p^{a}, p^{b}, x\right) \tag{11}
\end{equation*}
$$

where the first equality follows from homogeneity of degree zero in all variables, the second follows from homogeneity of degree minus one in I's second argument, and the third follows from homogeneity of degree one in I's first argument.

If I is homogeneous of degree zero in x, then, using the result of Theorem 1,

$$
\begin{equation*}
I\left(p^{a}, \lambda p^{b}, x\right)=I\left(p^{a} / \lambda, p^{b}, x / \lambda\right)=\frac{1}{\lambda} I\left(p^{a}, p^{b}, x\right) . \tag{12}
\end{equation*}
$$

where the first equality follows from I's homogeneity of degree zero in all its variables and the second equality follows from I 's homogeneity of degree one in its first argument and homogeneity of degree zero in x. Consequently I is homogeneous of degree minus one in its second argument.
(2) Next we show that, if I satisfies the reversal test, it is homogeneous of degree minus one in its second argument. Suppose I satisfies the reversal test. Then

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\frac{1}{I\left(p^{b}, p^{a}, x\right)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
I\left(p^{a}, \lambda p^{b}, x\right)=\frac{1}{I\left(\lambda p^{b}, p^{a}, x\right)}=\frac{1}{\lambda I\left(p^{b}, p^{a}, x\right)}=\frac{1}{\lambda} I\left(p^{a}, p^{b}, x\right), \tag{14}
\end{equation*}
$$

and I is homogeneous of degree minus one in its second argument.
(3) The result of part (2) can be used to show that, if I satisfies the reversal test, B must be homothetic in prices. Suppose I satisfies the reversal test. From Theorem 1 and part (2), I must be jointly homogeneous of degree zero in its first and second arguments. Then, for any $(\bar{p}, \hat{p}, x) \in \mathcal{R}_{++}^{2 m+n}$ and any $\lambda \in \mathcal{R}_{++}$,

$$
\begin{equation*}
B(\bar{p}, x)=B(\hat{p}, x), \tag{15}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
I(\hat{p}, \bar{p}, x)=1 \tag{16}
\end{equation*}
$$

Because I is homogeneous of degree zero in its first two arguments

$$
\begin{equation*}
I(\lambda \hat{p}, \lambda \bar{p}, x)=1, \tag{17}
\end{equation*}
$$

so

$$
\begin{equation*}
B(\lambda \bar{p}, x)=B(\lambda \hat{p}, x) \tag{18}
\end{equation*}
$$

and B is homothetic in prices.
(4) In this final part of the proof, we show that homotheticity of B in prices implies that I satisfies the reversal test. Suppose, therefore, that B is homothetic in prices. By the definition of I, for any $\left(p^{a}, p^{b}, x\right) \in \mathcal{R}_{++}^{2 m+n}$ and any $\lambda \in \mathcal{R}_{++}$,

$$
\begin{equation*}
B\left(p^{b}, I\left(p^{b}, p^{a}, x\right) x\right)=B\left(p^{a}, x\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(\lambda p^{b}, I\left(p^{b}, p^{a}, x\right) x\right)=B\left(\lambda p^{a}, x\right) \tag{20}
\end{equation*}
$$

Setting $\lambda=I\left(p^{b}, p^{a}, x\right)$, homogeneity of degree zero of B implies

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(I\left(p^{b}, p^{a}, x\right) p^{a}, x\right)=B\left(p^{a}, \frac{x}{I\left(p^{b}, p^{a}, x\right)}\right) \tag{21}
\end{equation*}
$$

The definition of I requires

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(p^{a}, I\left(p^{a}, p^{b}, x\right) x\right) \tag{22}
\end{equation*}
$$

and, because (21) and (22) are true for any $\left(p^{a}, p^{b}, x\right)$,

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\frac{1}{I\left(p^{b}, p^{a}, x\right)} \tag{23}
\end{equation*}
$$

and the reversal test is satisfied.

The circular test requires the product of indexes for successive price changes to be equal to the index for the complete change.

Circular Test: A common-scaling index I satisfies the circular test if and only if $I(\bar{p}, \tilde{p}, x) I(\tilde{p}, \hat{p}, x)=I(\bar{p}, \hat{p}, x)$ for all $(\bar{p}, \tilde{p}, \hat{p}, x) \in \mathcal{R}_{++}^{3 m+n}$.

If \bar{p} and \hat{p} are both set equal to p^{a} and \tilde{p} is set equal to p^{b}, the circular test's condition becomes the reversal test's condition. Consequently, satisfaction of the circular test implies satisfaction of the reversal test.

If a common-scaling index satisfies the reversal test, Theorem 3 demonstrates that it also satisfies the circular test.

Theorem 3: I satisfies the reversal test if and only if it satisfies the circular test.

Proof: Suppose I satisfies the reversal test and, for any $(\bar{p}, \tilde{p}, \hat{p}, x) \in \mathcal{R}_{++}^{3 m+n}$, let $I(\bar{p}, \tilde{p}, x)=$ $\bar{\mu}$ and $I(\tilde{p}, \hat{p}, x)=\hat{\mu}$. Then

$$
\begin{equation*}
B(\tilde{p}, x)=B(\bar{p}, \bar{\mu} x) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
B(\hat{p}, x)=B(\tilde{p}, \hat{\mu} x) \tag{25}
\end{equation*}
$$

Because B is homogeneous of degree zero, (24) implies

$$
\begin{equation*}
B(\tilde{p}, x)=B(\bar{p} / \bar{\mu}, x) \tag{26}
\end{equation*}
$$

and (25) implies

$$
\begin{equation*}
B(\hat{p}, x)=B(\tilde{p} / \hat{\mu}, x) \tag{27}
\end{equation*}
$$

Because I satisfies the reversal test, B is homothetic in p by Theorem 2, and, therefore, (26) implies

$$
\begin{equation*}
B(\tilde{p} / \hat{\mu}, x)=B(\bar{p} / \bar{\mu} \hat{\mu}, x) \tag{28}
\end{equation*}
$$

and (26) and (27) imply

$$
\begin{equation*}
B(\hat{p}, x)=B(\bar{p} / \bar{\mu} \hat{\mu}, x) \tag{29}
\end{equation*}
$$

Homogeneity of B implies

$$
\begin{equation*}
B(\hat{p}, x)=B(\bar{p}, \bar{\mu} \hat{\mu} x) \tag{30}
\end{equation*}
$$

and, as a consequence, $I(\bar{p}, \hat{p}, x)=\bar{\mu} \hat{\mu}=I(\bar{p}, \tilde{p}, x) I(\tilde{p}, \hat{p}, x)$, and the circular test is satisfied.

Because satisfaction of the reversal test is implied by satisfaction of the circular test, if I satisfies the circular test, it satisfies the reversal test.

Homogeneity of degree zero of B together with homotheticity of B in p might be thought to imply homotheticity of individual preferences. Although that is not true in general, it is the case if $n=1$.

Theorem 4: If $n=1, I$ satisfies the reversal test if and only if the individual's preferences are homothetic, with $V^{1}\left(p, x_{1}\right)=\phi^{1}\left(\alpha^{1}(p) x_{1}\right)$, where α^{1} is homogeneous of degree minus one and ϕ is increasing.

Proof: Suppose I satisfies the reversal test. Then B is homothetic in p and, because $B(p, x)=W\left(V^{1}\left(p, x_{1}\right)\right), V^{1}$ must be homothetic in p. For any $\left(\bar{p}, \hat{p}, x_{1}\right)$,

$$
\begin{equation*}
V^{1}\left(\bar{p}, x_{1}\right)=V^{1}\left(\hat{p}, x_{1}\right) \Leftrightarrow V^{1}\left(\lambda \bar{p}, x_{1}\right)=V^{1}\left(\lambda \hat{p}, x_{1}\right) \Leftrightarrow V^{1}\left(\bar{p}, x_{1} / \lambda\right)=V^{1}\left(\hat{p}, x_{1} / \lambda\right) \tag{31}
\end{equation*}
$$

for any $\lambda>0$, where the third equality follows from homogeneity of degree zero of V^{1}. Setting $\lambda=1 / x_{1}$, (31) becomes

$$
\begin{equation*}
V^{1}\left(\bar{p}, x_{1}\right)=V^{1}\left(\hat{p}, x_{1}\right) \Leftrightarrow V^{1}(\bar{p}, 1)=V^{1}(\hat{p}, 1) \tag{32}
\end{equation*}
$$

Because V^{1} is homothetic in p, it is ordinally equivalent to the function α^{1} which is homogeneous of degree minus one in p. It follows that

$$
\begin{equation*}
V^{1}\left(\bar{p}, x_{1}\right)=V^{1}\left(\hat{p}, x_{1}\right) \Leftrightarrow \alpha^{1}(\bar{p})=\alpha^{1}(\hat{p}) \tag{33}
\end{equation*}
$$

Consequently, p is separable from x_{1} in V^{1}, and

$$
\begin{equation*}
V^{1}\left(p, x_{1}\right)=\stackrel{*}{V}^{1}\left(\alpha^{1}(p), x_{1}\right) \tag{34}
\end{equation*}
$$

Because V^{1} is homogeneous of degree zero and α^{1} is homogeneous of degree minus one,

$$
\begin{equation*}
V^{1}\left(p, x_{1}\right)=\stackrel{*}{V}^{1}\left(\alpha^{1}\left(p / x_{1}\right), 1\right)=\stackrel{*}{V}^{1}\left(\alpha^{1}(p) x_{1}, 1\right)=\phi^{1}\left(\alpha^{1}(p) x_{1}\right) \tag{35}
\end{equation*}
$$

where $\phi^{1}=V^{*}(\cdot, 1)$. Consequently, preferences are homothetic.
If preferences are homothetic, $V^{1}(p, x)=\phi^{1}\left(\alpha^{1}(p) x_{1}\right)$ where α^{1} is homogeneous of degree one, so V^{1} is homothetic in p. Consequently, B is homothetic in p and the reversal test is satisfied.

The result of Theorem 4 is not surprising because, when $n=1$, the CS-SCOLI is equal to Bowley's [1928] index, which is equal to the ratio of expenditures needed to achieve the pre-change utility level of utility. Note that the index for person 1 satisfies $I^{1}\left(p^{a}, p^{b}, x_{1}\right)=\nu$ if and only if $V^{1}\left(p^{b}, x_{1}\right)=V^{1}\left(p^{a}, \nu x_{1}\right)=u_{1}^{b}$. It follows that $\nu x_{1}=E^{1}\left(u_{1}^{b}, p^{a}\right)$ where E^{1} is the
expenditure function that corresponds to V^{1}. Because $x_{1}=E^{1}\left(u_{1}^{b}, x_{1}\right), \nu=I^{1}\left(p^{b}, p^{a}, x^{1}\right)=$ $E^{1}\left(u_{1}^{b}, p^{a}\right) / E^{1}\left(u_{1}^{b}, p^{b}\right)$, the standard formulation of a price index for person 1 (Konüs [1939]). Thus Theorem 4 corresponds to the standard proofs that show that individual homotheticity is necessary and sufficient for satisfaction of the reversal and circular tests (Eichhorn [1978, Chapter 3]).

If $n \geq 2, B$ can be homothetic in p but not homothetic in x. Suppose, for example, that

$$
V^{i}\left(p, x_{i}\right)= \begin{cases}\left(\alpha(p) x_{i}\right)^{\frac{1}{2}} & \text { if } i=1 \tag{36}\\ \alpha(p) x_{i} & \text { if } i=2, \ldots, n\end{cases}
$$

where α is homogeneous of degree minus one, and

$$
\begin{equation*}
B(p, x)=\sum_{i=1}^{n} V^{i}\left(p, x_{i}\right)=\left(\alpha(p) x_{1}\right)^{\frac{1}{2}}+\sum_{i=2}^{n} \alpha(p) x_{i} \tag{37}
\end{equation*}
$$

In this example, individual preferences are identical and homothetic. B is clearly not homothetic in x but it is homothetic in p. To see this, note that

$$
\begin{equation*}
B(\bar{p}, x)=B(\hat{p}, x) \Leftrightarrow\left(\alpha(\bar{p}) x_{1}\right)^{\frac{1}{2}}+\sum_{i=2}^{n} \alpha(\bar{p}) x_{i}=\left(\alpha(\hat{p}) x_{1}\right)^{\frac{1}{2}}+\sum_{i=2}^{n} \alpha(\hat{p}) x_{i} \tag{38}
\end{equation*}
$$

If $\alpha(\bar{p})=\alpha(\hat{p}),(38)$ is satisfied and, because $B(p, x)$ increases whenever $\alpha(p)$ increases, there are no other solutions. Because α is homogeneous of degree minus one,

$$
\begin{equation*}
\alpha(\bar{p})=\alpha(\hat{p}) \Leftrightarrow \alpha(\lambda \bar{p})=\alpha(\lambda \hat{p}) \tag{39}
\end{equation*}
$$

for all $\lambda \in \mathcal{R}_{++}, B$ is homothetic in p.
In the above example, individual preferences are homothetic and identical. In another example,

$$
V^{i}\left(p, x_{i}\right)= \begin{cases}\frac{1}{\theta}\left(\alpha^{i}(p) x_{i}\right)^{\theta}+\beta^{i}(p) ; & \text { if } \theta \in \mathcal{R} \backslash\{0\} \tag{40}\\ \ln \left(\alpha^{i}(p) x_{i}\right)+\beta^{i}(p) ; & \text { if } \theta=0\end{cases}
$$

where α^{i} is homogeneous of degree minus one, $i \in\{1, \ldots, n\}, \theta \in \mathcal{R}$, and

$$
\begin{equation*}
B(p, x)=\sum_{i=1}^{n} V^{i}\left(p, x_{i}\right) \tag{41}
\end{equation*}
$$

In this example, individual preferences may differ and are not homothetic unless $\beta^{i}(p)$ is independent of p. B is homothetic in p if and only if $\sum_{i=1}^{n} \beta^{i}(p)$ is independent of p. To see this, note that, if that condition obtains and $\theta \neq 0$,

$$
\begin{equation*}
B(\bar{p}, x)=B(\hat{p}, x) \Leftrightarrow \sum_{i=1}^{n}\left(\alpha^{i}(\bar{p}) x_{i}\right)^{\theta}=\sum_{i=1}^{n}\left(\alpha^{i}(\hat{p}) x_{i}\right)^{\theta} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
B(\lambda \bar{p}, x)=B(\lambda \hat{p}, x) \Leftrightarrow \sum_{i=1}^{n}\left(\alpha^{i}(\lambda \bar{p}) x_{i}\right)^{\theta}=\sum_{i=1}^{n}\left(\alpha^{i}(\lambda \hat{p}) x_{i}\right)^{\theta} \tag{43}
\end{equation*}
$$

Because each α^{i} is homogeneous of degree minus one, this is true if and only if

$$
\begin{equation*}
\lambda^{-\theta} \sum_{i=1}^{n}\left(\alpha^{i}(\bar{p}) x_{i}\right)^{\theta}=\lambda^{-\theta} \sum_{i=1}^{n}\left(\alpha^{i}(\hat{p}) x_{i}\right)^{\theta}, \tag{44}
\end{equation*}
$$

$\lambda \in \mathcal{R}_{++}$, which implies $B(\bar{p}, x)=B(\hat{p}, x)$ so B is homothetic in p. A similar argument covers the case $\theta=0$.

If $V^{i}\left(p, x_{i}\right)=\alpha(p) x_{i}+\beta^{i}(p), i \in\{1, \ldots, n\}$, and

$$
\begin{equation*}
B(p, x)=\sum_{i=1}^{n} V^{i}\left(p, x_{i}\right)=\alpha(p) \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} \beta^{i}(p) \tag{45}
\end{equation*}
$$

individual cost-of-living indexes are given by

$$
\begin{equation*}
I^{i}\left(p^{a}, p^{b}, x_{i}\right)=\frac{\alpha\left(p^{b}\right) x_{i}+\beta^{i}\left(p^{b}\right)-\beta^{i}\left(p^{a}\right)}{\alpha\left(p^{a}\right) x_{i}} \tag{46}
\end{equation*}
$$

and the common-scaling index is

$$
\begin{equation*}
\frac{\alpha\left(p^{b}\right) \sum_{i=1}^{n} x_{1}+\sum_{i=1}^{n}\left[\beta^{i}\left(p^{b}\right)-\beta^{i}\left(p^{a}\right)\right]}{\alpha\left(p^{a}\right) \sum_{i=1}^{n} x_{i}}=\sum_{i=1}^{n}\left[\frac{x_{i}}{\sum_{i=1}^{n} x_{i}}\right]\left[\frac{\alpha\left(p^{b}\right) x_{i}+\beta^{i}\left(p^{b}\right)-\beta^{i}\left(p^{a}\right)}{\alpha\left(p^{a}\right) x_{i}}\right], \tag{47}
\end{equation*}
$$

which is the share-weighted sum of the individual indexes. Consequently, the plutocratic index is a special case of the common-scaling index, given appropriate social-evaluation and individual utility functions. ${ }^{3}$ This index satisfies the reversal and circular tests if and only if $\sum_{i=1}^{n} \beta^{i}(p)$ is independent of p. In this formulation, individuals are identical at the margin: increases or decreases in expenditure change demands equally. This restriction is not supported by the data.

It might be interesting to know when the common-scaling index is independent of all individual expenditures. A characterization is provided by Theorem 5.

Theorem 5: A common-scaling index I satisfies the reversal test and is independent of expenditures if and only if there exists a continuous function $\psi: \mathcal{R}_{++} \rightarrow \mathcal{R}$, homogeneous of degree one, and a continuous function $\tilde{B}: \psi\left(\mathcal{R}_{++}^{m}\right) \times \mathcal{R}_{++}^{n} \rightarrow \mathcal{R}$, decreasing in its first argument, increasing in x, and homogeneous of degree zero, such that B can be written as

$$
\begin{equation*}
B(p, x)=\tilde{B}(\psi(p), x) \tag{48}
\end{equation*}
$$

[^1]Proof: Suppose I satisfies the reversal test and is independent of x, so it can be written as $I\left(p^{a}, p^{b}, x\right)=\tilde{I}\left(p^{a}, p^{b}\right)$ for all $p^{a}, p^{b} \in \mathcal{R}_{++}^{m}$. By Theorem $3, I$ and \tilde{I} satisfy the circular test so, for all $p^{a}, p^{b}, p \in \mathcal{R}_{++}^{m}$,

$$
\begin{equation*}
\tilde{I}\left(p^{a}, p^{b}\right)=\tilde{I}\left(p^{a}, p\right) \tilde{I}\left(p, p^{b}\right) \tag{49}
\end{equation*}
$$

By the reversal test, $\tilde{I}\left(p, p^{b}\right)=1 / \tilde{I}\left(p^{b}, p\right)$. Setting $p=\mathbf{1}_{m}=(1, \ldots, 1) \in \mathcal{R}_{++}^{m}$,

$$
\begin{equation*}
\tilde{I}\left(p^{a}, p^{b}\right)=\frac{\tilde{I}\left(p^{a}, \mathbf{1}_{m}\right)}{\tilde{I}\left(p^{b}, \mathbf{1}_{m}\right)} \tag{50}
\end{equation*}
$$

Defining $\psi(\cdot)=\tilde{I}\left(\cdot, \mathbf{1}_{m}\right)$,

$$
\begin{equation*}
\tilde{I}\left(p^{a}, p^{b}\right)=\frac{\psi\left(p^{a}\right)}{\psi\left(p^{b}\right)} \tag{51}
\end{equation*}
$$

Because I and, therefore, \tilde{I} are homogeneous of degree one in p^{a}, ψ is homogeneous of degree one.
$I\left(p^{a}, p^{b}, x\right)=\mu$ if and only if

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(p^{a}, \mu x\right) \tag{52}
\end{equation*}
$$

Using (51) and homogeneity of B, this implies

$$
\begin{equation*}
B\left(p^{b}, x\right)=B\left(\frac{\psi\left(p^{b}\right) p^{a}}{\psi\left(p^{a}\right)}, x\right) \tag{53}
\end{equation*}
$$

Setting $p^{b}=p$ and $p^{a}=\mathbf{1}_{m}$,

$$
\begin{equation*}
B(p, x)=B\left(\frac{\psi(p) \mathbf{1}_{m}}{\psi\left(\mathbf{1}_{m}\right)}, x\right) \tag{54}
\end{equation*}
$$

Defining $\tilde{B}(\psi(p), x)$ by the right side of $(54),(48)$ is satisfied. Because B is homogeneous of degree zero and ψ is homogeneous of degree one, \tilde{B} is homogeneous of degree zero, and necessity is demonstrated.

To show sufficiency, suppose (48) is satisfied. Then

$$
\begin{equation*}
\tilde{B}\left(\psi\left(p^{b}\right), x\right)=\tilde{B}\left(\psi\left(p^{a}\right), \mu x\right)=\tilde{B}\left(\frac{\psi\left(p^{a}\right)}{\mu}, x\right), \tag{55}
\end{equation*}
$$

for all $x \in \mathcal{R}_{++}^{n}$, where the last term follows from homogeneity of \tilde{B}. It follows that

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\mu=\frac{\psi\left(p^{a}\right)}{\psi\left(p^{b}\right)} \tag{56}
\end{equation*}
$$

which is independent of x.

The separability condition of Theorem 5 does not require individual preferences to be homothetic. Suppose that $\left.V^{i}\left(p, x_{i}\right)=\ln \left(\alpha(p) x_{i}\right)\right)+\beta^{i}(p)$ with $\sum_{i=1}^{n} \beta^{i}(p)$ independent of
p and $B(p, z)=\sum_{i=1}^{n} V^{i}\left(p, x_{i}\right)$. In that case, p is separable in B, but individual preferences are not homothetic.

3. Individual Homotheticity

Individual price indexes satisfy the reversal and circular tests if and only if preferences are homothetic. In that case, indirect utility functions can be written as

$$
\begin{equation*}
V^{i}\left(p, x_{i}\right)=\stackrel{*}{V}^{i}\left(\frac{x_{i}}{\pi^{i}(p)}\right) \text { or } V^{i}\left(p, x_{i}\right)=\stackrel{*}{V}^{i}\left(\alpha^{i}(p) x_{i}\right) \tag{57}
\end{equation*}
$$

where $\pi^{i}(p)=1 / \alpha^{i}(p), \stackrel{*}{V}^{i}, \pi^{i}$ and α^{i} are continuous, $\stackrel{*}{V}^{i}$ is increasing, π^{i} is homogeneous of degree one, and α^{i} is homogeneous of degree minus one. We assume, in addition, that there is a scaling of each π^{i} or, equivalently, α^{i}, such that V^{*} is the same for all. ${ }^{4}$ Thus

$$
\begin{equation*}
V^{i}\left(p, x_{i}\right)=V^{*}\left(\frac{x_{i}}{\pi^{i}(p)}\right) \text { or } V^{i}\left(p, x_{i}\right)=V^{*}\left(\alpha^{i}(p) x_{i}\right) . \tag{58}
\end{equation*}
$$

The term $\alpha^{i}(p) x_{i}$ or, equivalently, $x_{i} / \pi^{i}(p)$ can be regarded as person i 's real expenditure. If two people have the same real expenditures, (58) implies they are equally well off.

In the homothetic case, individual price indexes are

$$
\begin{equation*}
I^{i}\left(p^{a}, p^{b}, x_{i}\right)=\frac{\pi^{i}\left(p^{a}\right)}{\pi^{i}\left(p^{b}\right)}=\frac{\alpha^{i}\left(p^{b}\right)}{\alpha^{i}\left(p^{a}\right)}, \tag{59}
\end{equation*}
$$

$i \in\{1, \ldots, n\}$.
The social-welfare function can be written as $B(p, x)=W\left(V^{1}\left(p, x_{1}\right), \ldots, V^{n}\left(p, x_{n}\right)\right)=\bar{W}\left(\frac{x_{1}}{\pi^{1}(p)}, \ldots, \frac{x_{n}}{\pi^{n}(p)}\right)=\bar{W}\left(\alpha^{1}(p) x_{1}, \ldots, \alpha^{n}(p) x_{n}\right)$.

Symmetry of W and (58) imply symmetry of \bar{W}. The index $I\left(p^{a}, p^{b}, x\right)$ is equal to μ where

$$
\begin{equation*}
\bar{W}\left(\alpha^{1}\left(p^{b}\right) x_{1}, \ldots, \alpha^{n}\left(p^{b}\right) x_{n}\right)=\bar{W}\left(\alpha^{1}\left(p^{a}\right) \mu x_{1}, \ldots, \alpha^{n}\left(p^{a}\right) \mu x_{n}\right) . \tag{61}
\end{equation*}
$$

To discuss the consequences of the reversal and circular tests, let $y_{i}=Y^{i}\left(p, x_{i}\right)=$ $\alpha^{i}(p) x_{i}, y=\left(y_{1}, \ldots, y_{n}\right)=Y(p, x)=\left(Y^{1}\left(p, x_{1}\right), \ldots, Y^{n}\left(p, x_{n}\right)\right)=\left(\alpha^{1}(p) x_{1}, \ldots, \alpha^{n}(p) x_{n}\right)$, and

$$
\begin{equation*}
\mathcal{Y}(x)=\left\{y=Y(p, x) \mid p \in \mathcal{R}_{++}^{m}\right\} . \tag{62}
\end{equation*}
$$

Here, y can be thought of as a vector of real expenditures, and $\mathcal{Y}(x)$ is the set of possible values for y given x. Because $a^{i}(p) \lambda x_{i}=\alpha^{i}(p / \lambda) x_{i}, \mathcal{Y}(x)$ is a cone (if $y \in \mathcal{Y}(x)$, then

[^2]$\lambda y \in \mathcal{Y}(x)$ for all positive $\lambda)$. If all preferences are identical, $\mathcal{Y}(x)$ is a ray for each x. On the other hand, if $m \geq n$, and $\alpha^{i}(p)=1 / p_{i}$ for all i so that person i consumes good i only, $\mathcal{Y}(x)=\mathcal{R}_{++}^{n}$ for each x. It is always true that the union $\cup_{x \in \mathcal{R}_{++}^{n}} \mathcal{Y}(x)=\mathcal{R}_{++}^{n}$.

Reversibility has the consequence that, for each x, the restriction of \bar{W} to $\mathcal{Y}(x)$ is homothetic.

Theorem 6: Suppose individual preferences are homothetic and (58) holds. If a commonscaling index I satisfies the reversal test, then, for all $x \in \mathcal{R}_{++}^{n}, \bar{y}, \hat{y} \in \mathcal{Y}(x)$, and $\lambda \in \mathcal{R}_{++}$,

$$
\begin{equation*}
\bar{W}(\bar{y})=\bar{W}(\hat{y}) \Rightarrow \bar{W}(\lambda \bar{y})=\bar{W}(\lambda \hat{y}) . \tag{63}
\end{equation*}
$$

Proof: If $\bar{y}, \hat{y} \in \mathcal{Y}(x)$, there exist $\bar{p}, \hat{p} \in \mathcal{R}_{++}^{m}$ such that $\bar{y}=Y(\bar{p}, x)$ and $\hat{y}=Y(\hat{p}, x)$. By Theorem 2, satisfaction of the reversal test implies that B is homothetic in p. Consequently,

$$
\begin{equation*}
\bar{W}(Y(\bar{p}, x))=\bar{W}(Y(\hat{p}, x)) \Leftrightarrow \bar{W}(Y(\bar{p} / \lambda, x))=\bar{W}(Y(\hat{p} / \lambda, x)) \tag{64}
\end{equation*}
$$

for all $\lambda \in \mathcal{R}_{++}$. Because $Y(p / \lambda, x)=\lambda Y(p, x)$, for all (p, x),

$$
\begin{equation*}
\bar{W}(\bar{y})=\bar{W}(\hat{y}) \Leftrightarrow \bar{W}(\lambda Y(\bar{p}, x))=\bar{W}(\lambda Y(\hat{p}, x)) \Leftrightarrow \bar{W}(\lambda \bar{y})=\bar{W}(\lambda \hat{y}) \tag{65}
\end{equation*}
$$

for all $\lambda \in \mathcal{R}_{++}$.

By itself, Theorem 6 does not imply that \bar{W} is homothetic. Suppose individual utility functions satisfy $\alpha^{i}(p)=\alpha(p), i=1, \ldots, n$, so that preferences are identical and homothetic, with

$$
\begin{equation*}
\bar{W}(y)=y_{1}^{1 / 2}+\sum_{i=2}^{n} y_{i} . \tag{66}
\end{equation*}
$$

The set $\mathcal{Y}(x)$ is the set of all $y=\left(\alpha(p) x_{1}, \ldots, \alpha(p) x_{n}\right)$, which is a set of scalar multiples of the vector x and is, therefore, a ray. In that case, the common-scaling index is the common individual index, the property of equation (63) is trivially satisfied, but \bar{W} is not homothetic.

To show that satisfaction of the reversal test implies that \bar{W} is homothetic, a preference diversity condition is needed. It requires the sets $\mathcal{Y}(x)$ to overlap so that any two values of y are connected by a sequence of such overlapping sets.

Preference Diversity: For all $\bar{y}, \hat{y} \in \mathcal{R}_{++}^{n}$, there exist $x^{1}, \ldots, x^{R} \in \mathcal{R}_{++}^{n}$ and $y^{1}, \ldots, y^{R+1} \in$ \mathcal{R}_{++}^{n}, such that

$$
\begin{gather*}
y^{1}=\bar{y} \in \mathcal{Y}\left(x^{1}\right) \tag{67}\\
y^{r} \in \mathcal{Y}\left(x^{r-1}\right) \cap \mathcal{Y}\left(x^{r}\right), r \in\{2, \ldots, R\}, \tag{68}
\end{gather*}
$$

and

$$
\begin{equation*}
y^{R+1}=\hat{y} \in \mathcal{Y}\left(x^{R}\right) \tag{69}
\end{equation*}
$$

Preference diversity ensures that any two values of y can be connected with overlapping sets $\mathcal{Y}\left(x^{1}\right), \ldots, \mathcal{Y}\left(x^{R}\right)$. Because the x s and y s are not required to be distinct, the case in which there exists $x \in \mathcal{R}_{++}^{n}$ such that $\bar{y}, \hat{y} \in Y(x)$ is covered. Preference diversity is sufficient to extend to result of Theorem 6 to all of \mathcal{R}_{++}^{n}.

Theorem 7: Suppose individual preferences are homothetic, satisfy preference diversity, and (58) holds. Then a common-scaling index I satisfies the reversal test if and only if \bar{W} is homothetic.

Proof: Suppose I satisfies preference diversity and the reversal test. And consider any $\bar{y}, \hat{y} \in \mathcal{R}_{++}^{n}$ with $\bar{W}(\bar{y})=\bar{W}(\hat{y})$. Then, using preference diversity, define $\tilde{y}^{r}=\tilde{\lambda} y^{r}$ such that $\bar{W}\left(\tilde{y}^{r}\right)=\bar{W}(\hat{y}), r=2, \ldots, R$. Because $\mathcal{Y}(x)$ is a cone for each $x, \tilde{y}^{r} \in \mathcal{Y}\left(x^{r}\right) \cap \mathcal{Y}\left(x^{r+1}\right)$, $r \in\{1, \ldots, R-1\}$. Repeated application of the result of Theorem 6 yields

$$
\begin{equation*}
\bar{W}(\lambda \bar{y})=\bar{W}\left(\lambda \tilde{y}^{2}\right) \tag{70}
\end{equation*}
$$

for all $\lambda \in \mathcal{R}_{++}$, and

$$
\begin{equation*}
\bar{W}\left(\lambda \tilde{y}^{r}\right)=\bar{W}\left(\lambda \tilde{y}^{r+1}\right), \tag{71}
\end{equation*}
$$

$r=1, \ldots, R$. (70) and (71) together imply

$$
\begin{equation*}
\bar{W}(\lambda \bar{y})=\bar{W}(\lambda \hat{y}) \tag{72}
\end{equation*}
$$

for all $\lambda \in \mathcal{R}_{++}$.
Sufficiency is immediate.

Any homothetic \bar{W}, including the members of the S-Gini family of social-welfare functions, is sufficient. ${ }^{5}$ If \bar{W} is homothetic, B must be separately homothetic in p and x. This observation is stated in a corollary to Theorem 7 .

Corollary 7: Suppose individual preferences are homothetic, satisfy preference diversity, and (58) holds. Then a common-scaling index I satisfies the reversal test if and only if the Bergson-Samuelson indirect B is homothetic in prices and homothetic in expenditures.

5 See Donaldson and Weymark [1980].

If \bar{W} is homothetic, the index takes on a simple form. The equally-distributed equivalent real expenditure $\Xi(y)$ (EDERE) for real-expenditure vector y is that level of expenditure which, if experienced by everyone, is as good as the actual distribution. Thus, $\Xi: \mathcal{R}_{++}^{n} \rightarrow \mathcal{R}$ is defined by

$$
\begin{equation*}
\Xi(y)=\xi \Leftrightarrow \bar{W}\left(\xi \mathbf{1}_{n}\right)=\bar{W}(y) . \tag{73}
\end{equation*}
$$

Ξ is ordinally equivalent to \bar{W} and, because \bar{W} is homothetic, Ξ is homogeneous of degree one. ${ }^{6}$ In addition, if every person has the same real expenditure, the EDERE is equal to it. Let $y^{b}=Y\left(p^{b}, x\right)$ and $y^{a}=Y\left(p^{a}, x\right)$. Because Ξ is ordinally equivalent to $\bar{W}, I\left(p^{a}, p^{b}, x\right)=\mu$ if and only if $\Xi\left(y^{b}\right)=\Xi\left(\mu y^{a}\right)$. Because Ξ is homogeneous of degree one,

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\frac{\Xi\left(y^{b}\right)}{\Xi\left(y^{a}\right)} \tag{74}
\end{equation*}
$$

Thus the index measures the percentage gain or loss in EDERE. The Atkinson [1970]-Kolm [1969]-Sen [1973] index of real-expenditure inequality τ is given by $T: \mathcal{R}_{++}^{n} \rightarrow \mathcal{R}$, where

$$
\begin{equation*}
\tau=T(y)=\frac{M(y)-\Xi(y)}{M(y)} \tag{75}
\end{equation*}
$$

where $M(y)$ is the mean of the elements of $y .{ }^{7}$ Homogeneity of degree one of Ξ implies that T is homogeneous of degree zero, so it measures relative inequality. (74) can be rewritten as

$$
\begin{equation*}
I\left(p^{a}, p^{b}, x\right)=\frac{M\left(y^{b}\right)\left[1-T\left(y^{b}\right)\right]}{M\left(y^{a}\right)\left[1-T\left(y^{a}\right)\right]} . \tag{76}
\end{equation*}
$$

The index is positive (negative) if a price change decreases (increases) mean real expenditure, inequality constant, or if a change increases (decreases) inequality, mean real expenditure constant.

There are good reasons to suppose that the social-welfare function is additively separable. ${ }^{8}$ If Ξ is continuous, increasing, homogeneous of degree one and additively separable, it must be a mean of order $r,{ }^{9}$ with

$$
\Xi(y)= \begin{cases}{\left[\frac{1}{n} \sum_{i=1}^{n} y_{i}^{r}\right]^{\frac{1}{r}}} & \text { if } r \in \mathcal{R} \backslash\{0\} ; \tag{77}\\ \prod_{i=1}^{n} y_{i}^{\frac{1}{n}} & \text { if } r=0\end{cases}
$$

[^3]The function exhibits inequality aversion in real expenditures if and only if the parameter $r<1$. The index is easy to compute using (74), with

$$
I\left(p^{a}, p^{b}, x\right)= \begin{cases}\frac{\left[\sum_{i=1}^{n}\left(y_{i}^{b}\right)^{r}\right]^{\frac{1}{r}}}{\left[\sum_{i=1}^{n}\left(y_{i}^{a}\right)^{r}\right]^{\frac{1}{r}}}=\frac{\left[\sum_{i=1}^{n}\left(\alpha^{i}\left(p^{b}\right) x_{i}\right)^{r}\right]^{\frac{1}{r}}}{\left[\sum_{i=1}^{n}\left(\alpha^{i}\left(p^{a}\right) x_{i}\right)^{r}\right]^{\frac{1}{r}}} & \text { if } r \in \mathcal{R} \backslash\{0\} ; \tag{78}\\ \prod_{i=1}^{n}\left[\frac{\alpha^{i}\left(p^{b}\right)}{\alpha^{i}\left(p^{a}\right)}\right]^{\frac{1}{n}} & \text { if } r=0\end{cases}
$$

Note that index for the case $r=0$ is independent of expenditures. If preference diversity is strengthened, it is possible to show, without assuming additive separability, that it is the only case with that property, given that individual utility functions are homothetic. ${ }^{10}$

Blackorby and Donaldson [1983] solved a very different problem, but their indexes are related to the ones found in this article. One of their cases is the Cobb-Douglas index for $r=0$ presented above. Another is related to the mean-of-order- r indexes of $(78) r \neq 0$, but lacks the expenditure terms. This occurs because of the minimizing implicit in Pollak's index.

4. Approximation of the Common-Scaling Index

The theoretical work above shows that although of satisfaction of circularity and reversal require homotheticity of individual preferences for an individual cost-of-living index, they do not require individual homotheticity for the common-scaling social cost-of-living-index. In particular, consistency of the CS-SCOLI requires only that the indirect social-welfare function B is homothetic in prices, a weaker condition that homotheticity of individual preferences. In this section, we ask whether either restriction is 'big' in an empirical sense. That is, although the conditions are not exactly true, is one of them much more wrong than the other?

In this section, we provide an answer to these questions. We show that the second-order approximation of the CS-SCOLI contains four components. First, it contains a first-order component equal to a weighted average of the Stone Index across the population. Second, it contains a term reflecting the weighted average of substitution effects. Third, it contains a term that captures income effects. If preferences are homothetic, then this latter term is zero. Finally, it contains a term that captures the income response of the CS-SCOLI itself. If the indirect welfare function is homothetic, then this term is zero. In this and the next section, we evaluate the relative sizes of the third and fourth terms given various specifications of social welfare and utility functions. We find that the third term, which captures non-homotheticities of individual preferences, is much larger in magnitude than the fourth term, which captures non-homotheticities of the indirect social welfare function.

In this section, we consider how to approximate I when B is homothetic in p in two cases: when individual utility functions are not homothetic and when they are. In the

10 See Donaldson and Pendakur [2010].
next section, we consider the empirical magnitude of these restrictions in a Monte Carlo experiment.

Define the normalized proportionate welfare-weight function, $\phi_{i}(p, x)$, as

$$
\begin{equation*}
\phi_{i}(p, x)=\frac{d B(p, x) / d \ln x_{i}}{\sum_{j=1}^{n} d B(p, x) / d \ln x_{j}}, \tag{79}
\end{equation*}
$$

and let normalized reference proportionate welfare weights, $\bar{\phi}_{i}$, be those evaluated at p^{b} (so that $\left.\bar{\phi}_{i}=\phi_{i}\left(p^{b}, x\right)\right)$. Let $w=\left(w_{1}, \ldots, w_{m}\right)$ be the m-vector of budget shares where w_{j} is defined as the share of total expenditure commanded by the j th commodity. Let w^{i} be the budget-share vector of the i th individual, and let $\bar{w}^{i}=w^{i}\left(p^{b}, x_{i}\right)$ be the value of the budget share vector for person i facing 'before' prices p^{b} and expenditure x_{i}. The following proposition, reproduced from Crossley and Pendakur [2010], establishes the second-order approximation of the common-scaling index. In the theorem statement, tildes (with no subscript i, and no superscript) denote $\bar{\phi}_{i}$-weighted averages.

Theorem 8: The second-order approximation of the common-scaling index I is

$$
\begin{equation*}
\ln I\left(p^{a}, p^{b}, x\right) \approx d p^{\prime} \widetilde{w}+\frac{1}{2} d p^{\prime}\left[\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})+\widetilde{\nabla_{\ln p^{\prime}} w}+\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}+\widetilde{\Phi}\right] d p \tag{80}
\end{equation*}
$$

where

$$
\begin{gather*}
d p=\ln p^{a}-\ln p^{b}, \tag{81}\\
\widetilde{w} \equiv \sum_{i=1}^{N} \bar{\phi}_{i} \bar{w}^{i} \tag{82}\\
\widetilde{\nabla_{\ln p^{\prime}}} w \equiv \sum_{i=1}^{N} \bar{\phi}_{i} \nabla_{\ln p^{\prime}} w^{i}\left(p^{b}, x_{i}\right), \tag{83}\\
\widetilde{\nabla_{\ln x}} w=\sum_{i=1}^{N} \bar{\phi} d w^{i}\left(p^{b}, x_{i}\right) / d \ln x_{i}, \tag{84}
\end{gather*}
$$

and

$$
\begin{equation*}
\widetilde{\Phi} \equiv \sum_{i=1}^{N} \bar{w}^{i} \nabla_{\ln p^{\prime}} \phi_{i}\left(p^{b}, x\right) \tag{85}
\end{equation*}
$$

If B is homothetic in p, the common-scaling index is homogeneous of degree -1 in p^{b} (Theorem 2). Note that the first-order part of the approximation, $d p^{\prime} \widetilde{w}$, satisfies this homogeneity by construction. Given, this, the second-order part of the approximation must be homogeneous of degree 0 in p^{b} in order for the approximation as a whole to be homogeneous of degree -1 in p^{b}. Homogeneity of degree zero is equivalent to

$$
\begin{align*}
& \left(\lambda+\ln p^{a}-\ln p^{b}\right)^{\prime}\left[\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})+\widetilde{\nabla_{\ln p^{\prime}}} w+\widetilde{\nabla_{\ln x}} w \widetilde{w}^{\prime}+\widetilde{\Phi}\right]\left(\lambda+\ln p^{a}-\ln p^{b}\right) \tag{86}\\
& =\left(\ln p^{a}-\ln p^{b}\right)^{\prime}\left[\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})+\widetilde{\nabla_{\ln p^{\prime}} w}+\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}+\widetilde{\Phi}\right]\left(\ln p^{a}-\ln p^{b}\right) .
\end{align*}
$$

This holds if and only if the row and column sums of the matrix in the square brackets are zero.

Note that $\left[\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})\right]$ has row and column sums of zero due to the fact that budget shares sum to 1 . Note also that since the budget-share vector everywhere sums to 1 , the sum of its derivatives with respect to any single argument over the m budget-shares is zero, so that $\lambda^{\prime} \widetilde{\nabla_{\ln p^{\prime}}} w=0_{m}^{\prime}$ and $\lambda^{\prime} \widetilde{\nabla_{\ln x} w}=0$. Further, since individual preferences satisfy homogeneity in $p, x, \widetilde{\nabla_{\ln p^{\prime}}} w \lambda+\widetilde{\nabla_{\ln x}} w \lambda=0_{m}$. Consequently, $\left[\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})+\widetilde{\nabla_{\ln p^{\prime}} w}+\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}+\widetilde{\Phi}\right]$ has row and column sums of zero if and only if $\widetilde{\Phi}$ has row and column-sums of zero. Since \bar{w}^{i} sums to 1 , and $\widetilde{\Phi} \equiv \sum_{i=1}^{N} \bar{w}^{i} \nabla_{\ln p^{\prime}} \phi_{i}\left(p^{b}, x\right)$, the restriction is satisfied if and only if $\nabla_{\ln p^{\prime}} \phi_{i}\left(p^{b}, x\right)=0_{m}$.

Consider next the restriction that individual utility functions are homothetic in p. In this case, it is well known that all individuals would have $d w^{i}\left(p^{b}, x_{i}\right) / d \ln x_{i}=0$, and thus

$$
\begin{equation*}
\widetilde{\nabla_{\ln x} w}=0 \tag{87}
\end{equation*}
$$

To sum up, if we restrict $\widetilde{\Phi}=0$, then the second-order approximation of the commonscaling index will satisfy the reversal and circular tests, and if we further restrict $\widetilde{\nabla_{\ln x} w}=0$, then each individual cost-of-living index will satisfy the tests. Now we consider the empirical magnitude of these restrictions.

5. Monte Carlo Experiment

Here, we set up an experiment to establish the relative size of these two restrictions in a plausible economic environment. We consider the same environment as Crossley and Pendakur [2010], which uses the data and empirical specification developed in Pendakur [2002]. We consider an environment with preference heterogeneity. To mimic the data used by Pendakur [2002], we use a single demographic characteristic z, the number of household members, and draw 1000 values of log-expenditure and the number of household members from independent standard normals with means of 4.54 and 2.17 , respectively, and standard deviations of 0.65 and 1.31 , respectively. The number of household members is discretized to $1,2,3 \ldots$.

For consumer preferences, we use the nine-good parametric demand system estimated by Pendakur [2002] in which all households have Quadratic Almost Ideal (QAI) indirect utility (see Banks, Blundell and Lewbel [1997]) given by:

$$
\begin{equation*}
V^{i}\left(p, x_{i}, z_{i}\right)=h\left(\frac{\ln x_{i}-\ln a\left(p, z_{i}\right)}{b(p)+q(p)\left(\ln x-\ln a\left(p, z_{i}\right)\right)}\right) \tag{88}
\end{equation*}
$$

where h is monotonically increasing. In this model, preference heterogeneity is entirely captured by z. Here, we use the following functional forms for a, b, and q :

$$
\begin{gather*}
\ln a(p, z)=d_{0}+d z+\ln p^{\prime} a+\ln p^{\prime} D z+\frac{1}{2} \ln p^{\prime} A_{0} \ln p+\frac{1}{2} \ln p^{\prime} A_{z} \ln p z \tag{89}\\
\ln b(p)=\ln p^{\prime} b \tag{90}
\end{gather*}
$$

and

$$
\begin{equation*}
q(p)=\ln p^{\prime} q \tag{91}
\end{equation*}
$$

where all parameter values are taken from Pendakur [2002, Table 3] and $\iota^{\prime} a=1, \iota^{\prime} b=\iota^{\prime} q=0$, $\iota^{\prime} D=\iota^{\prime} A_{0}=\iota^{\prime} A_{z}=0_{m}, A_{0}=A_{0}^{\prime}$ and $A_{z}=A_{z}^{\prime}$. For convenience, let the reference price vector be $p^{b}=1001_{m}$ and let $d_{0}=-\ln 100$. Thus, $\ln a\left(p^{b}, z\right)=\ln b\left(p^{b}\right)=q\left(p^{b}\right)=0$.

If $b(p)=q(p)=0$, then preferences are homothetic and heterogeneous across individuals. If $q(p)=0$ but $b(p) \neq 0$, then preferences fall into Deaton and Muelbauer's Almost Ideal class (logarithmic Gorman Polar form) and have preference heterogeneity coming through level effects in budget shares. If $q(p) \neq 0$, then budget shares are quadratic in the log of expenditure and fall into the Quadratic Almost Ideal class of Banks, Blundell and Lewbel [1997].

For this indirect utility function, reference utility is

$$
\begin{equation*}
\bar{u}_{i}=V\left(p^{b}, x_{i}, z_{i}\right)=h\left(\ln x_{i}-d z_{i}\right) . \tag{92}
\end{equation*}
$$

Consequently, the function h determines the marginal utility of money. If $h(t)=t$, then $V\left(p^{b}, x, z\right)=\ln x-d z_{i}$ and, at a vector of unit prices, the marginal utility of a proportionate increase in money is constant. If, in contrast, $h(t)=\exp (t)$, then $V\left(p^{b}, x, z\right)=x / \exp \left(d z_{i}\right)$, so that at a vector of unit prices, the marginal utility of money is constant $\left(1 / \exp \left(d z_{i}\right)\right)$, and the marginal utility of a proportionate increase in money is proportional to expenditure $\left(x / \exp \left(d z_{i}\right)\right)$. Since h is a monotonic transformation of utility, it drops out of all calculations of behavioural responses, but structure on h is required to compute welfare weights.

For the social welfare function, we use the generalized utilitarian form with
$W\left(u_{1}, \ldots, u_{N}\right)=\sum_{i=1}^{N} g\left(u_{i}\right)$. This yields utilitarianism, which is neutral to inequality of utilities, if $g\left(u_{i}\right)=u_{i}$. It yields social welfare which is somewhat averse to inequality in utilities if $g\left(u_{i}\right)=\ln u_{i}$ and strongly averse if $g\left(u_{i}\right)=-\left(u_{i}\right)^{-1}$. These welfare functions correspond to the mean-of-order-r or Atkinson class of social welfare functions with social welfare ordinally equivalent to the arithmetic mean of utility (if $g\left(u_{i}\right)=u_{i}$), the geometric mean of utility (if $g\left(u_{i}\right)=\ln u_{i}$) or the harmonic mean of utility (if $g\left(u_{i}\right)=-\left(u_{i}\right)^{-1}$).

Now, we need to evaluate the sizes of $\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}$ and $\widetilde{\Phi}$ in the context of the second-order approximation. Let \widetilde{S} denote the second order part of the approximation, excluding $\widetilde{\Phi}$:

$$
\begin{equation*}
\widetilde{S}=\widetilde{w} \widetilde{w}^{\prime}-\operatorname{diag}(\widetilde{w})+\widetilde{\nabla_{\ln p^{\prime}} w}+\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime} \tag{93}
\end{equation*}
$$

Since the second-order approximation of the common-scaling index uses quadratic forms, we compare the sizes of $d p^{\prime}\left[\widetilde{\nabla_{\ln x}} w \widetilde{w}^{\prime}\right] d p$ and $d p^{\prime} \widetilde{\Phi} d p$ to $d p^{\prime} \widetilde{\mathbf{S}} d p$ over many random draws of $d p$. We draw 1000 observations of the vector $d p$ from independent random uniform distributions, each with minimum -0.45 and maximum 0.55 . The uniform distribution chosen has small but positive mean in order to reflect underlying price growth. The independence of prices from each other allows for lots of relative price variation. For each draw, $d p^{t}, t=1, \ldots, 1000$, we compute the ratios $\left|d p^{t \prime} \widetilde{\Phi} d p^{t} / d p^{t \prime} \widetilde{\mathbf{S}} d p^{t}\right|$ and $\mid\left[d p^{t \prime}\left[\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}\right] d p^{t} / d p^{t \prime} \widetilde{\mathbf{S}} d p^{t} \mid\right.$. We use the absolute value to account for the fact that this ratio may be positive or negative for different price vectors, because the numerator and denominator need not have the same sign. Table 1 presents the average over the 1000 draws of these ratios for cases with varying marginal utility, social welfare functions and preference structures. Note that the random number generator seed is held constant across these experiments, so that the randomly generated population $\left\{x_{i}, z_{i}\right\}_{i=1}^{n}$ is identical across rows in the table.

The main lessons from Table 1 are that: (1) $\widetilde{\Phi}$ is smaller than $\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}$ under plausible circumstances; and (2) although the non-homotheticity of B, captured by $\widetilde{\Phi}$, may be thought of as so small that it may be ignored, the non-homotheticity of V, captured by $\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}$, is probably not so small that it can be ignored.

The average of the 1000 values of the $\left|d p^{t \prime} \widetilde{\Phi} d p^{t} / d p^{t /} \widetilde{\mathbf{S}} d p^{t}\right|$ takes its largest value of 0.084 for the common-scaling index with $g\left(u_{i}\right)=\ln u_{i}$ and $h(t)=\exp (t)$ combined with QAI preferences. This suggests that even in this case the term driven by $\widetilde{\Phi}$ is at least an order of magnitude smaller than the second-order part of the approximation as a whole. When utility is Almost Ideal and marginal utility is log-money metric and welfare is utilitarian, B is homothetic in p and $\widetilde{\Phi}$ is exactly zero. When $g\left(u_{i}\right)=u_{i}, h(t)=\exp (t)$ and preferences are QAI, the average value of $\left|d p_{t}^{\prime} \widetilde{\Phi} d p_{t} / d p_{t}^{\prime} \widetilde{\mathbf{S}} d p_{t}\right|$ is less than $1 / 20$. So, imposing reversibility in the approximation of the common-scaling index by ignoring the trailing term $\widetilde{\Phi}$ may not be too damaging in empirical work.

The term capturing non-homotheticities of individual preferences is based on the income effects in the budget share equations. Ignoring this is more costly. Between one-tenth and one-half of the second-order part of the approximation is driven by the value of $\widetilde{\nabla_{\ln x} w} \widetilde{w}$. Thus, we conclude that it is prudent to include this term in empirical work.

The bottom line here is as follows. A huge body of evidence tells us that individual preferences do not satisfy homotheticity, so that individual cost-of-living indices should not satisfy the reversal test. The common-scaling index can satisfy the reversal test if individual preferences are homothetic. However, restricting the common-scaling index to this case imposes large costs on the accuracy of the empirical estimates. In the theoretical part of
this paper, we show that the common-scaling index satisfies the reversal test if and only if a much weaker condition, homotheticity of the indirect welfare function, holds. Restricting the common-scaling index to this case imposes some cost on the accuracy of empirical estimates, but, in our view, this loss of accuracy is small relative to the gain of having a social cost-ofliving index that satisfies the reversal and circular tests.

6. Concluding Remarks

The common-scaling social cost-of-living index satisfies the reversal or circular tests if and only if the Bergson-Samuelson indirect social-welfare function B is homothetic in prices. Equivalently, the index satisfies either test if and only if it is homogeneous of degree minus one in its second argument. This does not require homotheticity of individual preferences and accommodates a wide range of social-welfare functions.

If individual preferences are homothetic, a preference diversity axiom is satisfied, and the social-welfare function is additively separable in utilities, the index can be written as the ratio of mean-of-order- r equally distributed real expenditures before and after the price change. If parameter r is less than one, the social-evaluation function exhibits aversion to inequality of real expenditures. And, if r is zero, the common-scaling index is independent of individual expenditures. We know, however, that individual preferences are not homothetic, and this suggests that the more general formulation should be used if resources for estimation are available.

In order to satisfy the tests, the indirect Bergson-Samuelson social-welfare function must be homothetic in prices, a restriction which affects estimation. Because available data are attached to households rather than individuals, estimation should be able to incorporate the fact of diverse household types. Crossley and Pendakur [2010] employ equivalence scales to deal with that problem. Building on their analysis, we have shown, in Section 5, that the consequence for estimation of the restriction that B is homothetic in prices is small enough to be ignored.

		Table 1		
How Big are $\widetilde{\nabla_{\ln x} w} \widetilde{w}^{\prime}$ and $\widetilde{\Phi}$?				
Social Welfare Function	Marginal Utility	Preferences	$\operatorname{avg}\left(\left\|\frac{d p^{\prime}\left[\nabla \widetilde{\ln x} w \widetilde{w}^{\prime}\right] d p}{d p^{\prime} \widetilde{\mathbf{S}} d p}\right\|\right)$	$\operatorname{avg}\left(\left\|\frac{d p^{\prime} \widetilde{\Phi} d p}{d p^{\prime} \widetilde{\mathbf{S}} d p}\right\|\right)$
$g\left(u_{i}\right)=u_{i}$	$h(t)=\exp (t)$	QAI	0.129	0.062
(Utilitarian)	(money-metric)	AI	0.132	0.045
	$h(t)=t$	QAI	0.138	0.022
	(log money-metric)	AI	0.176	0.000
$g\left(u_{i}\right)=\ln u_{i}$	$h(t)=\exp (t)$	QAI	0.241	0.084
(Inequality-Averse)	(money-metric)	AI	0.127	0.052
	$h(t)=t$	QAI	0.133	0.023
	(log money-metric)	AI	0.206	0.022
$g\left(u_{i}\right)=\left(u_{i}\right)^{-1}$	$h(t)=\exp (t)$	QAI	0.125	0.044
(Strongly Inequality-Averse)	(money-metric)	AI	0.472	0.030
	$h(t)=t$	QAI	0.173	0.070
	(log money-metric)	AI	0.209	0.054

REFERENCES

Atkinson, A., On the measurement of inequality, Journal of economic Theory 2, 1970, 244263.

Banks, J., R. Blundell and A. Lewbel, Quadratic Engel curves and consumer demand, Review of Economics and Statistics, 79, 1997, 527-539.
Blackorby, C., W. Bossert and D. Donaldson, Income inequality measurement: the normative approach, Chapter 3 of The Handbook of Inequality Measurement, J. Silber, ed., Kluwer, Dordrecht, 1999, 133-157.

Blackorby, C., W. Bossert and D. Donaldson, Population Issues in Social Choice Theory, Welfare Economics, and Ethics, Cambridge University Press, New York, 2005.

Blackorby, C. and D. Donaldson, Preference diversity and the aggregate economic cost of living, in Price Level Measurement, W. E. Diewert and C. Montmarquette, eds., Statistics Canada, 1983, 373-410.

Bowley, A., Notes on index numbers, Economic Journal 38, 1928, 216-237.
Crossley, T., and K. Pendakur, The common-scaling social cost of living index, Journal of Business and Economic Statistics 28, 2010, 523-538.
Donaldson, D., and K. Pendakur, Index-number tests and the common-scaling social cost-ofliving index, Discussion Paper No. 10-02, University of British Columbia Department of Economics, 2010.

Donaldson, D., and J. Weymark, A single-parameter generalization of the Gini indices of inequality, Journal of Economic Theory 22, 1980, 67-86.
Eichhorn, W., Functional Equations in Economics, Addison-Wesley, Reading, 1978.
Kolm, S.-C., The optimal production of social justice, in Public Economics, J. Margolis and S. Guitton, eds., Macmillan, London, 1969, 145-200.

Konüs, A., The problem of the true index of the cost of living, Econometrica 7, 1939, 10-29 (original Russian version 1924).

Pendakur, K., Taking prices seriously in the measurement of inequality, Journal of Public Economics 2002, 86, 47-69.

Pollak, R., Group cost-of-living indexes, American Economic Review 70, 1980, 273-278.
Pollak, R., The social cost-of-living index, Journal of Public Economics 15, 1981, 311-336.
Sen, A., On Economic Inequality, Oxford University Press, Oxford, 1973.

[^0]: 1 We thank two referees and editor Marc Fleurbaey for their valuable comments, Charlie Blackorby and Walter Bossert for comments and assistance with proofs, and the Social Sciences and Humanities Research Council for research support.

[^1]: 3 See Crossley and Pendakur [2009].

[^2]: 4 Scaling of these functions affects neither preferences nor individual cost-of-living indexes. When the aggregator functions V^{*}, \ldots, V^{n} are the same, however, the choice is not arbitrary because $\alpha^{1}(p) x_{1}, \ldots, \alpha^{n}(p) x_{n}$ must be indexes of individual standards of living that can be compared interpersonally.

[^3]: ${ }^{6}$ Let $\xi^{\prime}=\Xi(\lambda y), \lambda \in \mathcal{R}_{++}$. Then $\bar{W}\left(\xi^{\prime} \mathbf{1}_{n}\right)=\bar{W}(\lambda y)$. Because \bar{W} is homothetic, this implies $\bar{W}\left(\left(\xi^{\prime} / \lambda\right) \mathbf{1}_{n}\right)=\Xi(y)$, and $\xi^{\prime}=\Xi(\lambda y)=\lambda \Xi(y)$.

 7 For a survey of ethical indexes of inequality, see Blackorby, Bossert and Donaldson [1999].
 8 See Blackorby, Bossert and Donaldson [2005, Chapter 4].
 9 See Eichhorn [1978, Chapter 2] for a proof.

